Practice Problems

These problems mostly cover the second half of the semester. They do not cover every topic, and are meant as extra practice, not a comprehensive review.

- 1. Let $f, g: [a, b] \to \mathbb{R}$ be continuous functions such that $\int_a^b f = \int_a^b g$. Prove that f(x) = g(x) for some $x \in [a, b]$.
- 2. Define $f_n : \mathbb{R} \to \mathbb{R}$ by $f_n(x) = \frac{x}{1+nx^2}$. Find $f : \mathbb{R} \to \mathbb{R}$ such that $f_n \to f$ uniformly. Prove that $\lim_{n\to\infty} f'_n(x) = f'(x)$ for all $x \in \mathbb{R}$ except x = 0.
- 3. For each $k \in \mathbb{N}$ define

$$g_k : [-\pi, \pi] \to \mathbb{R}$$
 by $g_k(x) = (\sin(x))^2 (\cos(x))^{2k}$.

- a) Find $f: [-\pi, \pi] \to \mathbb{R}$ such that $\sum g_k \to f$ pointwise.
- b) Does $\sum g_k \to f$ uniformly?
- c) If we change the domain to $[\pi/4, 3\pi/4]$, does $\sum g_k \to f$ uniformly?
- 4. Define $f, g: \mathbb{R} \to \mathbb{R}$ by $f(x) = e^{\sin(x)}$ and $g(x) = \int_0^{x^2} f$. Find g'(x).
- 5. Let $a_n \in \mathbb{R}$ for all $n \in \mathbb{N}$ such that $\sum a_n 2^n$ converges. Prove that the sequence of functions $\sum a_n x^n$ converges uniformly on [-1, 1].
- 6. Let $I \subseteq \mathbb{R}$ be an open interval and let $f: I \to \mathbb{R}$ be differentiable such that that $f'(x) \neq 0$ for all $x \in I$.
 - a) Prove that there exists an "inverse function", that is, a function $g : f(I) \to \mathbb{R}$ such that $g \circ f(x) = x$ for all $x \in I$ and $f \circ g(y) = y$ for all $y \in f(I)$.
 - b) Prove that g is continuous.