Practice Problems

These problems mostly cover the second half of the semester. They do not cover every topic, and are meant as extra practice, not a comprehensive review.

1. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous functions such that $\int_{a}^{b} f=\int_{a}^{b} g$. Prove that $f(x)=g(x)$ for some $x \in[a, b]$.
2. Define $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ by $f_{n}(x)=\frac{x}{1+n x^{2}}$. Find $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f_{n} \rightarrow f$ uniformly. Prove that $\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)=f^{\prime}(x)$ for all $x \in \mathbb{R}$ except $x=0$.
3. For each $k \in \mathbb{N}$ define

$$
g_{k}:[-\pi, \pi] \rightarrow \mathbb{R} \text { by } g_{k}(x)=(\sin (x))^{2}(\cos (x))^{2 k}
$$

a) Find $f:[-\pi, \pi] \rightarrow \mathbb{R}$ such that $\sum g_{k} \rightarrow f$ pointwise.
b) Does $\sum g_{k} \rightarrow f$ uniformly?
c) If we change the domain to $[\pi / 4,3 \pi / 4]$, does $\sum g_{k} \rightarrow f$ uniformly?
4. Define $f, g: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=e^{\sin (x)}$ and $g(x)=\int_{0}^{x^{2}} f$. Find $g^{\prime}(x)$.
5. Let $a_{n} \in \mathbb{R}$ for all $n \in \mathbb{N}$ such that $\sum a_{n} 2^{n}$ converges. Prove that the sequence of functions $\sum a_{n} x^{n}$ converges uniformly on $[-1,1]$.
6. Let $I \subseteq \mathbb{R}$ be an open interval and let $f: I \rightarrow \mathbb{R}$ be differentiable such that that $f^{\prime}(x) \neq 0$ for all $x \in I$.
a) Prove that there exists an "inverse function", that is, a function $g: f(I) \rightarrow \mathbb{R}$ such that $g \circ f(x)=x$ for all $x \in I$ and $f \circ g(y)=y$ for all $y \in f(I)$.
b) Prove that g is continuous.

